Abstract Submitted for the MAR14 Meeting of The American Physical Society

Enhanced electrical properties by post thermal nitridation in atomic-layer-deposited HfO₂ on InP YU-SEON KANG, DAE-KYOUNG KIM, HANG-KYU KANG, KWANG-SIK JEONG, MANN-HO CHO, DAE-HONG KO, Yonsei University, HYOUNGSUB KIM, Sungkyunkwan University, JUNG-HYE SEO, Korea Basic Science Institute, DONG-CHAN KIM, Samsung Electronics, SAMSUNG ELECTRONICS COLLABORATION, NEXT-GENERATION SUB-STRATE TECHNOLOGY FOR HIGH PERFORMANCE SEMICONDUCTOR DEVICES (NO. KI002083) COLLABORATION — We investigated the effects of post-nitridation in HfO₂ thin films grown on InP by atomic layer deposition on the structural, chemical, and electrical properties of the resultant film as well as its thermal stability compared to samples that were only thermally-annealed by comprehensive physical, electrical, and theoretical analyses. By post-deposition annealing under NH₃ vapor at 600° , an InN layer formed at the HfO₂/InP interface and ionized NH_x was incorporated in the HfO_2 film. Accordingly, interfacial reactions were effectively suppressed in nitrided HfO_2/InP by controlling out-diffusion of In or P atoms from the substrate. Nitridation of HfO_2/InP modulated energy band parameters at the HfO_2/InP interface, thereby decreasing leakage current. Moreover, the nitridation process significantly suppressed the generation of D_{it} due to controlled diffusion of In and P. DFT calculations showed that In_i and P_i in HfO₂ are closely related, with defect states within the band gap of InP.

> Yu-Seon Kang Yonsei Univ

Date submitted: 06 Nov 2013

Electronic form version 1.4