Density functional theory investigation of NO$_2$ and SO$_2$ adsorption on isolated and anatase-supported BaO clusters1 MUSTAFA TEK, HANDE USTUNEL, Department of Physics, Middle East Tech University, Ankara, Turkey, DANIELE TOFFOLI, Department of Chemistry, Middle East Tech University, Ankara, Turkey — BaO is the most commonly used storage component in NO$_x$ storage and reduction catalysts (NSR). TiO$_2$ has recently been suggested by several authors as a promising support material, with increased sulphur tolerance when compared with traditional supports such as γ-Al$_2$O$_3$. The optimization of NSR catalysts requires knowledge of the interaction between the storage and support components. In this talk, we present a DFT investigation of the electronic and structural properties of NO$_2$ and SO$_2$ adsorption on isolated and anatase-supported (BaO)$_n$ ($n=1,2,4,6,8,9$) clusters. Generally, supported BaO clusters are found to display better tolerance towards sulphur poisoning compared to both bare BaO (100) surface and supported BaO overlayers.

1This work is supported by UHEM National Center for High Performance Computing (Grant No. 10922010).

Mustafa Tek
Middle East Tech Univ

Date submitted: 07 Nov 2013
Electronic form version 1.4