MAR14-2013-000522

Abstract for an Invited Paper for the MAR14 Meeting of the American Physical Society

Earle K. Plyler Prize: Probing the Structural Evolution and Size-Dependent Reactivity of Gold Clusters by Photoelectron Spectroscopy LAI-SHENG WANG, Brown University

Gold has attracted much interest in nanoscience because of its emerging catalytical and optical properties at the nanometer scale. A prerequisite to elucidate the molecular mechanisms of the catalytic effects of nanogold is a detailed understanding of the structural and electronic properties of gold clusters as a function of size. Negatively charged gold clusters (Au_n^-) up to n = 12 were known to be planar. Using photoelectron spectroscopy and computational chemistry, we found that Au_{16}^- to Au_{18}^- possess hollow cage structures, while Au_{20}^- was found to have a high symmetry tetrahedral structure. Beyond Au_{20}^- , we have found that low symmetry core-shell type structures started to emerge at Au_{25}^- . The size-dependent reactivity of O_2 with gold clusters was further studied using photoelectron spectroscopy. Previous works showed that only even-sized Au_n^- clusters react with O_2 , whereas odd-sized Au_n^- clusters are nonreactive. Superoxo-type $Au_n(O_2^-)$ complexes were proposed for even-sized clusters. We observed van der Waals complexes of odd-sized Au_n^- clusters with O_2 , confirming the inertness of the odd-sized Au_n^- toward O_2 . This observation led to new insight into how neutral even-sized Au_n clusters interact with O_2 . Further studies revealed that there is a superoxo to peroxo chemisorption transition for the O_2 interaction with even-sized Au_n^- clusters. The O_2 in the peroxo $O_2Au_n^-$ complexes is much more activated (with a longer O–O bond length), suggesting that this mode of chemisorption may play a more important role in the O_2 activation by gold nanoparticles.