Abstract for an Invited Paper
for the MAR14 Meeting of
the American Physical Society

Models of chromatin spatial organisation in the cell nucleus
MARIO NICODEMI, Università di Napoli “Federico II”

In the cell nucleus chromosomes have a complex architecture serving vital functional purposes. Recent experiments have started unveiling the interaction map of DNA sites genome-wide, revealing different levels of organisation at different scales. The principles, though, which orchestrate such a complex 3D structure remain still mysterious. I will overview the scenario emerging from some classical polymer physics models of the general aspect of chromatin spatial organisation. The available experimental data, which can be rationalised in a single framework, support a picture where chromatin is a complex mixture of differently folded regions, self-organised across spatial scales according to basic physical mechanisms. I will also discuss applications to specific DNA loci, e.g. the HoxB locus, where models informed with biological details, and tested against targeted experiments, can help identifying the determinants of folding.