Abstract Submitted for the MAR14 Meeting of The American Physical Society

Magneto-transport and magnetization studies on thermally activated flux flow in iron-based superconductors¹ MARTIN NIKOLO, Saint Louis University, XIAOYAN SHI, Dept. of Phys. & Natl. High Magnetic Field Lab, Florida State Univ., EUN SANG CHOI, Appl. Supercond. Ctr.& Natl. High Magnetic Field Lab, Florida State Univ., JIANYI JIANG, JEREMY WEISS, ERIC HELLSTROM, Appl. Supercond. Ctr. & Natl. High Magnetic Field Lab, Florida State Univ. — We study the magneto-transport properties of three iron-based high temperature superconductors, polycrystalline samples, $Ba(Fe_{0.95} Ni_{0.05})_2As_2$ ($T_c =$ 20.4 K), Ba(Fe_{0.94} Ni_{0.06})₂As₂ ($T_c = 18.5$ K), and Ba(Fe_{0.91}Co_{0.09})₂As₂ ($T_c = 25.3$ K) in magnetic fields of up to 18 T. The thermally activated magnetic flux behavior was retrieved by plotting $\ln \rho$ vs. 1/T (ρ and T are resistivity and temperature, respectively) and obtaining the activation energies U_0 for flux motion near T_c . We show a 3-D plot of the distribution of U_0 as a function of T and magnetic field H. We apply the WHH model by measuring dH_{c2}/dT at T_c to estimate the upper critical field $H_{c2}(T=0)$; we estimate the coherence length $\xi(T=0)$. We study the broadening of resistive transition as a function of the applied magnetic field and compare it to Tinkham's prediction for high- T_c materials.

¹M. Nikolo supported by NHMFL Users Grant. This work in FSU was supported by NSF DMR-1006584 and DMR-1306785, the State of Florida and by NHMFL which is supported by the National Science Foundation under DMR-1157490 and by the U.S. Department of Energy.

Martin Nikolo Saint Louis University

Date submitted: 09 Nov 2013

Electronic form version 1.4