Remote entanglement of transmon qubits1 M. HATRIDGE, K. SLIWA, A. NARLA, S. SHANKAR, Z. LEGHTAS, Applied Physics Department, Yale University, M. MIRRAHIMI, Applied Physics Department, Yale University and INRIA Paris Rocquencourt, S.M. GIRVIN, R.J. SCHOELKOPF, M.H. DEVORET, Applied Physics Department, Yale University — An open challenge in quantum information processing with superconducting circuits is to entangle distant (non-nearest neighbor) qubits. This can be accomplished by entangling the qubits with flying microwave oscillators (traveling pulses), and then performing joint operations on a pair of these oscillators. Remarkably, such a process is embedded in the act of phase-preserving amplification, which transforms two input modes (termed signal and idler) into a two-mode squeezed output state. For an ideal system, this process generates heralded, perfectly entangled states between remote qubits with a fifty percent success rate. For an imperfect system, the loss of information from the flying states degrades the purity of the entanglement. We show data on such a protocol involving two transmon qubits imbedded in superconducting cavities connected to the signal and idler inputs of a Josephson Parametric Converter (JPC) operated as a nearly-quantum limited phase-preserving amplifier. Strategies for optimizing performance will also be discussed.

1Work supported by: IARPA, ARO, and NSF.

M. Hatridge
Applied Physics Department, Yale University

Date submitted: 09 Nov 2013

Electronic form version 1.4