Abstract Submitted for the MAR14 Meeting of The American Physical Society

Geometric Frustration with Disorder NAYOON WOO, DANIEL M. SILEVITCH, THOMAS F. ROSENBAUM, the University of Chicago — We study the effects of Nd doping on the geometrically-frustrated Heisenberg antiferromagnet Gadolinium Gallium Garnet (GGG), using linear and nonlinear ac magnetic susceptibility. Doping levels from 0.1 to 1 percent Nd alleviate the intrinsic frustration of pure GGG and elevate the ordering temperature compared to the pure material. We use nonlinear pump-probe magnetic susceptometry to examine cluster dynamics for both the pure and the doped series. At low frequency (\sim 10 Hz), spectral hole burning is possible, indicating the presence of spin clusters with discrete energy levels largely decoupled from the overall spin bath. At kHz, we find a Fano resonance, revealing scattering pathways between spin cluster excitations and the bath. We trace the evolution of this resonance behavior as a function of dopant concentration.

> Nayoon Woo the University of Chicago

Date submitted: 09 Nov 2013

Electronic form version 1.4