Annealing-induced enhancement of ferromagnetism and nanoparticle formation in ferromagnetic-semiconductor GeFe\(^1\) YUKI WAKABAYASHI, YOSHISUKE BAN, SHINOBU OHYA, MASAAKI TANAKA, The Univ. of Tokyo — Ge-based ferromagnetic semiconductor GeFe is a promising material for future Si-based spintronic devices because of the high-quality single crystallinity and good compatibility with Si. However, its Curie temperature \((T_C)\) is currently at the highest 170 K. In this study, we investigate the annealing effect on GeFe in order to enhance the ferromagnetism. The Ge\(_{0.895}\)Fe\(_{0.105}\) thin film was epitaxially grown on a Ge(001) substrate by low-temperature molecular beam epitaxy. Then, post-growth annealing was carried out. We have analyzed GeFe films both crystallographically and magnetically by using transmission electron microscopy, transmission electron diffraction, energy-dispersive X-ray spectroscopy, magnetic circular dichroism, and superconducting quantum interference device. We have successfully increased the \(T_C\) of Ge\(_{0.895}\)Fe\(_{0.105}\) up to \(\sim\) 220 K while keeping a single ferromagnetic phase when the annealing temperature was lower than 500\(^\circ\)C. In contrast, when annealed at 600\(^\circ\)C, single-crystal GeFe nano-particles with stacking faults and twins, which have a high \(T_C\) nearly up to room temperature, were formed in the film. Both types of films have a flat surface (roughness of 2-5 MLs), and thus they are promising for Si-based spin devices.

\(^1\)This work was partly supported by Giant-in-Aids for Scientific Research including Specially Promoted Research, Project for Developing Innovation Systems of MEXT, and FIRST program of JSPS.