Bandgap narrowing of TiO$_2$ via codoping for enhanced photocatalytic reactions1

BING WANG, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, PR China

We investigated the growth of Cr–N codoped single-crystal anatase TiO$_2$(001) (A-TiO$_2$) thin films using pulsed laser deposition with a target of Cr$_2$O$_3$ and TiN mixture. N concentrations were finely tuned under different growth temperatures and oxygen pressures, and high quality films with atomically flat terraces were obtained. UV–Vis absorption measurements showed that the band-gap of the codoped A-TiO$_2$ film is significantly narrowed in comparison with the undoped and monoelement doped films. We further systematically investigated the structures and the activity of the oxidized and reduced (1 × 4) reconstructed surfaces of A-TiO$_2$ epitaxially grown on SrTiO$_3$ using scanning tunneling microscopy/spectroscopy, X-ray/ultraviolet photoemission spectroscopy and first-principles calculations. Quite unexpectedly, it is found that the perfect (1 × 4) surface of A-TiO$_2$ is not even active for H$_2$O and O$_2$ adsorption at room temperature. Two types of intrinsic point defects are identified, among which only the Ti$^{3+}$ defect site on the reduced surface demonstrates considerable activity for H$_2$O and O$_2$ adsorption. The perfect surface itself should be fully oxidized, but shows no obvious activity. We thus propose an oxidized ridge model for the reconstructed (1 × 4) surface, where the Ti atoms at the normal ridge sites are sixfold coordinated. The Ti-rich point defects on reduced surface are fourfold-coordinated. This model provides consistent explanations for our experimental observations. We have compared the results with those from rutile TiO$_2$(001)-(1 × 1) surface in our investigations. Our findings suggest that the activity of the A-TiO$_2$ surface should depend on its reduction status, similar to that of rutile TiO$_2$ surfaces.

1This work was supported by NBRP (grant 2011CB921400) and NSFC (grant 9021013).