Abstract Submitted for the MAR14 Meeting of The American Physical Society

Hyperstoichiometric Oxygen in Fluorite-type U_3O_8 Formed at Extreme Conditions FUXIANG ZHANG, MAIK LANG, ROD EWING, University of Michigan, DEPARTMENT OF EARTH AND ENVIRONMENTAL SCI-ENCES TEAM — U_3O_8 was obtained by annealing UO_3 in a reducing atmosphere at 200 °C. Powder sample of β -U₃O₈ was pressurized at room temperature up to 37.5 GPa and XRD patterns clearly indicated that a phase transition occurred between 3-11 GPa. The high-pressure phase is a fluorite-like structure. The high-pressure phase was then laser heated to over 1700 K in the diamond anvil cell at high pressure conditions. No phase transition was found at high pressure/ temperature conditions, and the fluorite-like structure of U_3O_8 is even fully quenchable. The lattice parameter of the fluorite-like high-pressure phase is 5.425 Å at ambient conditions, which is smaller than that of the stoichiometric UO_2 . Previous experiments have shown that the stoichiometric uranium dioxide (UO_2) is not stable at high pressure conditions and starts to transform to a cotunnite structure at ~ 30 GPa. When heating the sample at high pressure, the critical transition pressure is greatly reduced. However, the fluorite-like high-pressure phase of U_3O_8 is very stable at high pressure/high temperature conditions. The enhanced phase stability is believed to be related to the presence of extra oxygen (or U vacancies) in the structure.

> Fuxiang Zhang University of Michigan

Date submitted: 11 Nov 2013

Electronic form version 1.4