MAR14-2013-000981

Abstract for an Invited Paper for the MAR14 Meeting of the American Physical Society

Monte Carlo Field-Theoretic Simulations for Melts of Symmetric Diblock Copolymer¹ MARK MATSEN, Univ of Waterloo

Monte Carlo field-theoretic simulations (MC-FTS) are performed on melts of symmetric diblock copolymer for invariant polymerization indexes extending down to experimentally relevant values of $\bar{N} \sim 10^4$. The simulations are performed with a fluctuating composition field, $W_-(\mathbf{r})$, and a pressure field, $W_+(\mathbf{r})$, that follows the saddle-point approximation. Our study focuses on the disordered-state structure function, S(k), and the order-disorder transition (ODT). Although short-wavelength fluctuations cause an ultraviolet (UV) divergence in three dimensions, this is readily compensated for with the use of an effective Flory-Huggins interaction parameter, χ_e . The resulting S(k) matches the predictions of renormalized one-loop (ROL) calculations over the full range of $\chi_e N$ and \bar{N} examined in our study, and agrees well with Fredrickson-Helfand (F-H) theory near the ODT. Consistent with the F-H theory, the ODT is discontinuous for finite \bar{N} and the shift in $(\chi_e N)_{\text{ODT}}$ follows the predicted $\bar{N}^{-1/3}$ scaling over our range of \bar{N} .

¹This work was supported by EPSRC and SHARCNET