Universal temperature dependence of the mass flux in solid helium1 ROBERT HALLOCK, YE. VEKHOV, Univ. of Mass. Amherst — The flux, F, carried by solid 4He, with nominal 300 ppb 3He concentration, χ, in the range 25.6 - 26.3 bar rises with falling temperature and at a temperature T_d the flux decreases toward zero [1]. The behavior of the flux above T_d demonstrates the presence of a bosonic Luttinger liquid [2]. We study F as a function of 3He concentration χ for $T > T_d$ to explore the effect of 3He on the temperature dependence of F. We find that F is sample-dependent and that the temperature dependence of F above T_d is universal; data for all samples scales to collapse on a universal curve. The universal behavior extrapolates to zero flux in the vicinity of $T_h \approx 610$ mK. With increases in temperature, an activated process degrades the flux. One possibility is the presence of kinks on dislocation cores, which would introduce disorder and introduce phase slips.

1Supported by NSF DMR 12-05217.