Abstract Submitted for the MAR14 Meeting of The American Physical Society

A molecular dynamics study on the structural and electronic properties of two-dimensional icosahedral B12 cluster based structures¹ CHERNO BABA KAH, M. YU, C.S. JAYANTHI, S.Y. WU, University of Louisville — Our previous study on one-dimensional icosahedral B12 cluster (α -B12) based chain [Bulletin of APS Annual Meeting, p265 (2013)] and ring structures has prompted us to study the two-dimensional (2D) α -B12 based structures. Recently, we have carried out a systematic molecular dynamics study on the structural stabilities and electronic properties of the 2D α -B12 based structures using the SCED-LCAO method [PRB 74, 15540 (2006)]. We have considered several types of symmetry for these 2D structures such as $\delta 3$, $\delta 4$, $\delta 6$ (flat triangular), and α' types. We have found that the optimized structures are energetically in the order of $\delta 6 < \alpha'$ $<\delta 3 < \delta 4$ which is different from the energy order of $\alpha' < \delta 6 < \delta 4 < \delta 3$ found in the 2D boron monolayer sheets [ACS Nano 6, 7443 (2012)]. A detailed discussion of this study will be presented.

¹The first author acknowledges the McSweeny Fellowship for supporting his research in this work.

Cherno Baba Kah University of Louisville

Date submitted: 11 Nov 2013

Electronic form version 1.4