Unexpected Giant Superconducting Fluctuation and Anomalous Semiconducting Normal State in NdO$_{1-x}$F$_x$Bi$_{1-y}$S$_2$ Single Crystals

XIYU ZHU1, JIANZHONG LIU, DELONG FANG, Nanjing University, ZHENYU WANG, Chinese Academy of Sciences, JIE XING, ZENGYI DU, HUAN YANG, HAI-HU WEN, Nanjing University, CENTER FOR SUPERCONDUCTING PHYSICS AND MATERIALS TEAM — Experiments on single crystals of BiS$_2$-based superconductors are highly desired. We report the successful growth of the NdO$_{1-x}$F$_x$Bi$_{1-y}$S$_2$ single crystals. Resistive and magnetic measurements reveal that the bulk superconducting transition occurs at $T_c = 4.83$ K, while an unexpected giant superconducting fluctuation appears at temperatures as high as 2-4 kBTC. Analysis based on the anisotropic Ginzburg-Landau theory gives an anisotropy $\gamma = \sqrt{m_c/m_{ab}} \approx 30 \sim 45$. Two gap features with magnitudes of about 3.5 ± 0.3 meV and 7.5 ± 1 meV were observed by scanning tunneling spectroscopy. The smaller gap is associated with the bulk superconducting transition yielding a huge ratio $2\Delta_1/k_BT_c = 16.8$, the larger gap remains up to about 26 K. The normal state recovered by applying a high magnetic field shows an anomalous semiconducting behavior. All these suggest that the superconductivity in this newly discovered superconductor cannot be formatted into the BCS picture.

1Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China

Xiyu Zhu
Nanjing University

Date submitted: 11 Nov 2013

Electronic form version 1.4