Abstract Submitted for the MAR14 Meeting of The American Physical Society

Wavenumber dependent Gilbert damping \mathbf{in} metallic ferromagnets¹ YI LI, WILLIAM BAILEY, Department of Applied Physics and Applied Mathematics, Columbia University, BAILEY $TEAM^2$ — New terms to the dynamical equation of magnetization motion, associated with spin transport, have been reported over the past several years. Each newly identified term is thought to possess both a real and an imaginary effective field leading to fieldlike and dampinglike torques on magnetization. Here we show that three metallic ferromagnets possess an imaginary effective-field term which mirrors the well-known real effectivefield term associated with exchange in spin waves. Using perpendicular standing spin wave resonance between 2-26 GHz, we evaluate the magnitude of the finitewavenumber (k) dependent Gilbert damping of the uniform mode (α_u) and the first spin wave mode (α_s) in three typical ferromagnets, Ni₇₉Fe₂₁, Co, and Co₄₀Fe₄₀B₂₀. By taking the difference of α_s and α_u and excluding the eddy current damping α_E $(\Delta \alpha_k = \alpha_s - \alpha_u + \alpha_E)$, we find the presence of a k^2 term, as $\Delta \alpha_k = \Delta \alpha_0 + A_k \cdot k^2$ in all three metals. We interpret the new term as the continuum analog of spin pumping, predicted recently, and show that its magnitude, $A_k=0.07-0.1$ nm², is consistent with transverse spin relaxation lengths (1-3 nm) as measured by conventional spin pumping.

¹National Science Foundation No. ECCS-0925829 ²http://magnet.ap.columbia.edu/

> Yi Li Ph. D. candidate

Date submitted: 11 Nov 2013

Electronic form version 1.4