MAR14-2013-001253

Abstract for an Invited Paper for the MAR14 Meeting of the American Physical Society

Thermal Conductivities of Crystalline Organic Semiconductors¹

JOSEPH BRILL, University of Kentucky

As applications for organic semiconductors grow, it is becoming increasingly important to know their thermal conductivities, k. For example, for sub-micron electronic devices, values of $k > k_0 \sim 5 \text{ mW/cm/K}$ are needed, while values $k < k_0$ are required for desired thermoelectric applications. Whereas it is not surprising that semiconducting polymers typically have room temperature thermal conductivities below k_0 , many molecular organic crystals also have values of k below this value. We have started measurements of both the in-plane and interplane thermal diffusivities of layered crystalline organic semiconductors using frequency² and position dependent³ ac-calorimetry; the thermal conductivities are then determined from the specific heats measured with differential scanning calorimetry. For rubrene, which has $k < k_0$, the interplane thermal conductivity is several times smaller than the in-plane value, although its temperature dependence indicates that the phonon mean-free path is at least a few layers.⁴ On the other hand, the in-plane thermal conductivity of TIPS-pentacene,⁵ is several times greater than k_0 , similar to that of the quasi-one dimensional organic metal TTF-TCNQ.⁶ Remarkably, its interlayer thermal conductivity is several times larger than its in-plane value,⁷ perhaps due to interactions between the large (triisopropylsilylethynyl) side groups on the pentacene backbone.

¹Research done with Hao Zhang and Yulong Yao and supported by NSF grants DMR-0800367, EPS-0814194, and DMR-1262261 ²H. Zhang and J.W. Brill, J. Appl. Phys. **114**, 043508 (2013).

²H. Zhang and J.W. Brill, J. Appl. Phys. **114**, 043508 (2013

- ³I. Hatta *et al*, Jpn. Jnl Appl. Phys. **25**, L493 (1986).
- ⁴H. Zhang and J.W. Brill
- $^{5}\mathrm{J.E.}$ Anthony, Chem. Rev. $\mathbf{106},\,5028$ (2006).
- ⁶M.B. Salamon *et al*;, Phys. Rev. B **11**, 619 (1975).
- ⁷H. Zhang and J.W. Brill