Thermal Conductivities of Crystalline Organic Semiconductors

JOSEPH BRILL, University of Kentucky

As applications for organic semiconductors grow, it is becoming increasingly important to know their thermal conductivities, k. For example, for sub-micron electronic devices, values of $k > k_0 \sim 5 \text{ mW/cm/K}$ are needed, while values $k < k_0$ are required for desired thermoelectric applications. Whereas it is not surprising that semiconducting polymers typically have room temperature thermal conductivities below k_0, many molecular organic crystals also have values of k below this value. We have started measurements of both the in-plane and interplane thermal diffusivities of layered crystalline organic semiconductors using frequency-dependent and position-dependent ac-calorimetry; the thermal conductivities are then determined from the specific heats measured with differential scanning calorimetry. For rubrene, which has $k < k_0$, the interplane thermal conductivity is several times smaller than the in-plane value, although its temperature dependence indicates that the phonon mean-free path is at least a few layers. On the other hand, the in-plane thermal conductivity of TIPS-pentacene, is several times greater than k_0, similar to that of the quasi-one dimensional organic metal TTF-TCNQ. Remarkably, its interlayer thermal conductivity is several times larger than its in-plane value, perhaps due to interactions between the large (triisopropylsilyl)ethyl side groups on the pentacene backbone.

1Research done with Hao Zhang and Yulong Yao and supported by NSF grants DMR-0800367, EPS-0814194, and DMR-1262261
4H. Zhang and J.W. Brill
7H. Zhang and J.W. Brill