Magnetic control of electric polarization in \((\text{Cu},\text{Ni})\text{B}_2\text{O}_4\) \(^1\)

KHANH NGUYEN, Tohoku Univ, NOBUYUKI ABE, MITSURU AKAKI, MASASHI TOKUNAGA, University of Tokyo, KYOTA KUBO, TAKAHIKO SASAKI, Tohoku Univ, TAKA-HISA ARIMA, University of Tokyo — We report the generation and control of electric polarization using an external magnetic field in a noncentrosymmetric system nickel doped copper metaborate \((\text{Cu},\text{Ni})\text{B}_2\text{O}_4\) and discuss the origin of this effect. In this material, weak ferromagnetic moment can be rotated by applying an electric field. While this implies spin-driven ferroelectricity, the previous study via examining the structure parameters and dielectric constant showed no clear evidence for this effect, which is successfully observed in this study. Applying a magnetic field along the [110] or \([-1-10]\) axis induces electric polarization along the [001] axis. The polarization is reversed by switching the magnetic field direction between the [110] and \([-1-10]\) axes. The result can be well explained in the framework of spin-dependent metal-ligand hybridization.

\(^1\)We acknowledge the support from Grant-in-Aid (24244045) from MEXT and the Mitsubishi foundation.

Khanh Nguyen
Tohoku Univ

Date submitted: 12 Nov 2013

Electronic form version 1.4