Abstract Submitted
for the MAR14 Meeting of
The American Physical Society

Defect Energy Levels in GaAsBi and GaAs Grown at Low Temperatures

PATRICIA MOONEY, KEELAN WATKINS, ZENAN JIANG, ALBERTO BASILE, Simon Fraser University, RYAN LEWIS, University of British Columbia, VAHID BAHRAMI-YEKTA, University of Victoria, MOSTAFA MASNADI-SHIRAZI, DANIEL BEATON, University of British Columbia, THOMAS TIEDJE, University of Victoria — GaAs$_{1-x}$Bi$_x$ alloys have the potential to extend conventional III-V semiconductor devices to longer infrared wavelengths. The bandgap energy decreases as the Bi fraction is increased, but with a small increase in lattice constant, thus reducing lattice mismatch constraints for GaAsBi/GaAs heterostructures. However, Bi is incorporated into GaAs films grown by molecular beam explitaxy (MBE) only at $T_G < 400$ °C, making defects a concern. DLTS measurements show that trap concentrations in Si-doped (n-type) GaAs layers grown at standard temperatures are $< 4 \times 10^{13}$ cm$^{-3}$. They increase to 2×10^{16} cm$^{-3}$ when T_G is 390 °C and to $\sim 10^{18}$ cm$^{-3}$ when T_G is 330 °C, where the energy level of the dominant defect is $E_C - 0.40$ eV. When only 0.3% Bi is incorporated into n-type GaAs at 330 °C, formation of the $E_C - 0.40$ eV trap is suppressed. Other electron traps, including the dominant traps having energy levels at $E_C - 0.66$ eV and $E_C - 0.80$ eV, are present in similar concentrations in both GaAs and GaAsBi layers grown at 330 °C and, therefore, result from the low growth temperature. The dominant traps are both point defect complexes involving an arsenic atom on a gallium lattice site (AsGa).

1Funded by the Natural Science and Engineering Council of Canada

Patricia Mooney
Simon Fraser University

Date submitted: 12 Nov 2013