Abstract Submitted for the MAR14 Meeting of The American Physical Society

Defect Energy Levels in GaAsBi and GaAs Grown at Low **Temperatures¹** PATRICIA MOONEY, KEELAN WATKINS, ZENAN JIANG, ALBERTO BASILE, Simon Fraser University, RYAN LEWIS, University of British Columbia, VAHID BAHRAMI-YEKTA, University of Victoria, MOSTAFA MASNADI-SHIRAZI, DANIEL BEATON, University of British Columbia, THOMAS TIEDJE, University of Victoria — $GaAs_{1-x}Bi_x$ alloys have the potential to extend conventional III-V semiconductor devices to longer infrared wavelengths. The bandgap energy decreases as the Bi fraction is increased, but with a small increase in lattice constant, thus reducing lattice mismatch constraints for GaAsBi/GaAs heterostructures. However, Bi is incorporated into GaAs films grown by molecular beam expitaxy (MBE) only at $T_G < 400$ °C, making defects a concern. DLTS measurements show that trap concentrations in Si-doped (n-type) GaAs layers grown at standard temperatures are $<4x10^{13}$ cm⁻³. They increase to $2x10^{16}$ cm⁻³ when T_G is 390 °C and to ~10¹⁸ cm⁻³ when T_G is 330 °C, where the energy level of the dominant defect is E_C -0.40 eV. When only 0.3% Bi is incorporated into n-type GaAs at 330 °C, formation of the E_{C} -0.40 eV trap is suppressed. Other electron traps, including the dominant traps having energy levels at E_{C} -0.66 eV and E_{C} -0.80 eV, are present in similar concentrations in both GaAs and GaAsBi layers grown at $330 \,^{\circ}\mathrm{C}$ and, therefore, result from the low growth temperature. The dominant traps are both point defect complexes involving an arsenic atom on a gallium lattice site (AsGa).

¹Funded by the Natural Science and Engineering Council of Canada

Patricia Mooney Simon Fraser University

Date submitted: 12 Nov 2013

Electronic form version 1.4