Electron Localization in Fe$_3$O$_4$: an Ab Initio Wannier Study1

PERRY SAKKARIS, CAREL BOEKEMA, San Jose State University — Magnetite, Fe$_3$O$_4$, is an unusual ferrimagnetic oxide with emergent physical properties that are not yet fully understood. Among these are the metal-insulator transition at the Verwey Temperature T_V (123K) and a spin-glass-like transition at about twice T_V. The “extra” fully spin-polarized 3d electrons that span the t_{2g} bands of the B sublattice show strong electron correlation effects and are mainly responsible for conduction above T_V. We perform a DFT+U calculation to obtain a set of Bloch orbitals describing the t_{2g} bands. We then use the gauge invariance of Wannier functions to transform the Bloch orbitals into a set of Maximally Localized Wannier Functions (MLWFs). The MLWFs are a real space description of the “extra” 3d electrons allowing us to describe their spatial localization and determine the mechanism of conduction above T_V. Wannier studies of Fe$_3$O$_4$ may also allow us to determine the extent of electronic coupling to lattice vibrations, which may provide us substantial quantitative clues on the physical mechanism of the Verwey Transition.

1Research is supported by AFC San Jose.