Towards magnetic 3D x-ray imaging

PETER FISCHER, CXRO/LBNL Berkeley CA, R. STREUBEL, IFW Dresden Germany, M.-Y. IM, CXRO/LBNL Berkeley CA, D. PARKINSON, ALS/LBNL, Berkeley CA, J.-I. HONG, DGIST Daegu Korea, O.G. SCHMIDT, D. MAKAROV, IFW Dresden Germany — Mesoscale phenomena in magnetism will add essential parameters to improve speed, size and energy efficiency of spin driven devices. Multidimensional visualization techniques will be crucial to achieve mesoscale goals. Magnetic tomography is of large interest to understand e.g. interfaces in magnetic multilayers, the inner structure of magnetic nanocrystals, nanowires or the functionality of artificial 3D magnetic nanostructures. We have developed tomographic capabilities with magnetic full-field soft X-ray microscopy combining X-MCD as element specific magnetic contrast mechanism, high spatial and temporal resolution due to the Fresnel zone plate optics [1]. At beamline 6.1.2 at the ALS (Berkeley CA) a new rotation stage allows recording an angular series (up to 360 deg) of high precision 2D projection images. Applying state-of-the-art reconstruction algorithms it is possible to retrieve the full 3D structure. We will present results on prototypic rolled-up Ni [2] and Co/Pt tubes and glass capillaries coated with magnetic films and compare to other 3D imaging approaches e.g. in electron microscopy [3].


1Supported by BES MSD DOE Contract No. DE-AC02-05-CH11231 and ERC under the EU FP7 program (grant agreement No. 306277).

Peter Fischer
CXRO/LBNL Berkeley CA

Date submitted: 12 Nov 2013

Electronic form version 1.4