Abstract Submitted
for the MAR14 Meeting of
The American Physical Society

Hydrodynamic damping of collective motion in a quasi-two-dimensional dense colloidal particle suspension

MICHAEL RYAN, West Chester University, TIM STILL, ARJUN YODH, University of Pennsylvania, KEVIN APTOWICZ, West Chester University — Dense colloidal suspensions confined to a monolayer are often used to explore physical phenomena such as the glass transition, crystallization, and frustration. Although hydrodynamic damping is known to play a significant role in the dynamics of these systems, it is difficult to quantify due to the collective nature of the particle motions. In this work, we employ digital video-microscopy to explore the phonon dynamics of an entropic 2D colloidal crystal. Friction coefficients along high symmetry directions in q-space are extracted and provide insight about the hydrodynamic forces at play. Preliminary results suggest the friction coefficient decreases with increasing phonon wavelength, but it does not appear to vanish.

KBA acknowledges support from grant DMR-1206231. AGY acknowledges support from grants PENN-MRSEC DMR11-20901, NASA NNX08AO0G, and DMR-1205463.