MAR14-2013-001667

Abstract for an Invited Paper for the MAR14 Meeting of the American Physical Society

Engineered semiconductor nanocrystals with enhanced carrier multiplication yields VICTOR KLIMOV, Los Alamos National Laboratory

Carrier multiplication (CM) is a process whereby absorption of a single photon results in multiple electron-hole pairs (excitons). This process could benefit a number of solar-energy conversion technologies, most notably photocatalysis and photovoltaics. This presentation overviews recent progress in understanding the CM process in semiconductor nanocrystals, motivated by an outstanding challenge in this field - the lack of capability to predict the CM performance of nanocrystals based on their known photophysical properties or documented parameters of parental bulk solids. Here, we present a possible solution to this problem by showing that, using biexciton Auger lifetimes and intraband relaxation rates inferred from ultrafast spectroscopic studies, we can rationalize relative changes in CM yields as a function of nanocrystal composition, size and shape. Further, guided by this model, we demonstrate a two-fold enhancement in multiexciton yields in PbSe nanorods vs. quantum dots attributed to enhanced Coulomb interactions. We also explore the control of competing intra-band cooling for increasing multiexciton production. Specifically, we design a new type of hetero-structured PbSe/CdSe quantum dots with reduced rates of intra-band relaxation and demonstrate a four-fold boost in the multiexciton yield. These studies provide useful guidelines for future efforts to achieve the ultimate, energy-conservation-defined CM efficiencies.