Fluidic Switching in Nanochannels for the Control of a Synthetic DNA-based Motor

C.S. NIMAN, M. BALAZ, J.O. TEGENFELDT, Nanometer Structure Consortium (nmC@LU) and Division of Solid State Physics, Lund University, Sweden, P.M.G. CURMI, School of Physics, University of New South Wales, Australia; Centre of Applied Medical Research, Australia, N.R. FORDE, M. ZUCKERMAN, Department of Physics, Simon Fraser University, Canada, HEINER LINKE, nmC@LU and Division of Solid State Physics, Lund University, Sweden — Processive molecular motors are thought to utilize a “power stroke” whereby chemical changes are converted into conformational changes, facilitating forward motion. We have developed a concept for a synthetic molecular motor, the Inchworm (IW), which harnesses salt-induced changes in DNA conformation to achieve power strokes. To implement IW we must switch between four solutions (of varied salt concentration) surrounding DNA confined in a nanochannel (NC) while monitoring its response. We have developed NCs of radii 100-400 nm, with 10-20 nm wide top-slits for buffer exchange via diffusion from adjacent microfluidic channels. NCs are made in SiO$_2$ to allow for imaging through the substrate. To cycle through four buffers specifically designed microchannels are used. We measure changes in intensity when fluids containing fluorescent molecules are switched, with and without a pressure difference over the NCs. By fitting this data we extract effective diffusivity of molecules and determine fluid velocities, information that is crucial for evaluating IW performance.


Cassandra S. Niman
Nanometer Structure Consortium (nmC@LU) and
Division of Solid State Physics, Lund University

Date submitted: 13 Nov 2013