Magnetic Excitations in MnV$_2$O$_4$ Studied by Inelastic Neutron Scattering

KEISUKE MATSUURA, Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561, Japan, AMANE UEHARA, Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan, YOICHI NII, NOBUYUKI ABE, HAJIME SAGAYAMA, TAKA-HISA ARIMA, Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561, Japan, SUNGDAE JI, RYOICHI KAJIMOTO, Research Center for Neutron Science and Technology, Comprehensive Research Organaiization for Science and Society, Tokai, Ibaraki 319-1106, Japan — We focus on the dynamical structure of a spin-orbital coupled system MnV$_2$O$_4$, which crystallizes in the spinel structure. Each V$^{3+}$ ion with the 3d2 configuration is surrounded by an oxygen octahedron. The orbital degree of freedom consequently exists in the t$_{2g}$ states. Below T$_{oo}$ =53K, the t$_{2g}$ orbitals are arranged in the layered antiferroic way. Simultaneously, non-collinear ferrimagnetic ordering takes place. In this spin-orbital correlated system, in addition to conventional spin waves, orbital waves and spin-orbital coupled excitations are expected to appear. A measurement of inelastic neutron scattering on single crystals of MnV$_2$O$_4$ was carried out at 5K using a Fermi-chopper type spectrometer 4SEASONS installed at BL01, J-PARC, Japan. The dispersion of the magnetic excitations at 8-9meV have been revealed, which was only rather vaguely observed in the previous study. We have performed spin-wave calculations based on the spin Hamiltonian and compared with the experimental results in order to identify the 8-9meV modes.