Abstract Submitted for the MAR14 Meeting of The American Physical Society

Baroplastic Behavior in Block Copolymer Blends YONGHOON LEE, HYUNGJU AHN, HOYEON LEE, Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea, EUNHYE KIM, YOUNG SOO HAN, Neutron Science Division, Research Reactor Utilization Department, Korea Atomic Energy Research Institute, Daejeon 305-353, Korea, DU YEOL RYU, Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea, YONSEI UNIVERSITY TEAM, KOREA ATOMIC ENERGY RE-SEARCH INSTITUTE TEAM — The study of block copolymer (BCP) blends, composed of the weakly interacting polystyrene-b-poly(n-butyl methacrylate) (PS-b-PnBMA) and polystyrene-b-poly-(n-hexyl methacrylate) (PS-b-PnHMA) presented the various composition-dependent phase behaviors arising from a miscible phase between the PnBMA and PnHMA blocks in the BCP blends. As the blend composition varied from PS-b-PnBMA to PS-b-PnHMA, a lower disorder-to-order transition (LDOT) to a closed-loop phase transition and to an order-to-disorder transition (ODT) on heating were observed. The hydrostatic pressure effects on the various phase behaviors of the BCP blends were further investigated using small-angle neutron scattering (SANS), depolarized light scattering (DPLS) and transmission electron microscope (TEM).

> Yonghoon Lee Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea

Date submitted: 13 Nov 2013

Electronic form version 1.4