Structural and Magnetic Characterizations of Y_xCo_y Nanowires1
BISHNU DAHAL, KESHAB SAPKOTA, RAJENDRA DULAL, PARSHU GYAWALI, IAN L. PEGG, JOHN PHILIP, Catholic University of America —
Nanowires of Y_xCo_y (Y_2Co_{17}, YCo_3 and YCo_5) are grown using electrospinning
 technique and by annealing at high temperature. The size of the nanowires varies
from 80 – 300 nm in diameter. Structural analyses show that Y_2Co_{17} exhibits rhombohedral
 crystal structure while YCo_5 displays hexagonal crystal structure. The
as-grown nanowires are polycrystalline in nature with an average grain size of 40
nm. YCo_3 nanowires are amorphous in nature. All the Y_xCo_y nanowires are found
to be strong ferromagnetic materials as reported in the bulk system. The observed
coercivity of the Y_xCo_y nanowires is low, typically around 500 Oe in comparison to
the large coercivity observed in YCo nanoparicles

1National Science Foundation, Grant No. ECCS-0845501 and DMR-0922997

Bishnu Dahal
Catholic University of America

Date submitted: 13 Nov 2013