Magnetotransport and Structural Properties of Mn$_2$CoAl Thin Film Spin Gapless Semiconductor1 MICHELLE E. JAMER, BADIH A. ASSAF, TRITHEP DEVAKUL, DON HEIMAN, Northeastern University — Spin gapless semiconductors (SGS) are predicted to have a density of states displaying both half-metallic and zero-gap semiconducting properties. They are being investigated for spintronic devices due to their unique magnetic and electrical properties. Calculations predict several SGS compounds2,3 including Mn$_2$CoAl, Ti$_2$CoSi, V$_3$Al, and Ti$_2$MnAl. Mn$_2$CoAl thin films were grown by MBE on GaAs (100) substrates at 200 °C.4 The as-grown thin films were epitaxial with the substrate, which resulted in a tetragonal distortion. Annealing studies showed that the films lose their epitaxial registration and approach an aligned cubic structure for 325 °C with $a=c=5.80$ Å. The resistivity shows a thermally-activated semiconducting-like negative slope at higher temperatures. The Hall resistivity scales with ρ_{xx}^2 for all temperatures and magnetic fields, expected for a topological intrinsic anomalous Hall effect computed from the Berry phase curvature. The connection of electrical and spin-gapless properties is discussed.

1NSF-DMR-0907007