Spin-Polarization of \(\nu = 3/2 \) Composite Fermions\(^1\) INSUN JO, DOBROMIR KAMBUROV, M.A. MUEED, YANG LIU, MANSOUR SHAYEGAN, LOREN PFEIFFER, KEN WEST, KIRK BALDWIN, JERRY LEE, Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA — We report the observation of ballistic transport commensurability minima in the magnetoresistance of \(\nu = 3/2 \) composite fermions (CFs) in high-quality two-dimensional electron systems confined to wide GaAs quantum wells and subjected to a unidirectional periodic potential modulation. The positions of the minima are consistent with the magnetic commensurability condition implying the commensurability features originate from a periodic magnetic field. Their distance away from \(\nu = 3/2 \) yields the size and shape of the CF Fermi contour. At a fixed electron density of \(n \approx 1.8 \times 10^{11} \, \text{cm}^{-2} \), as the quantum well width increases from 30 to 60 nm, the CFs become fully spin-polarized. The application of an additional parallel magnetic field (\(B_\parallel \)) leads to a significant distortion of the CF Fermi contour. The distortion is much more severe compared to the \(\nu = 1/2 \) CF case at comparable \(B_\parallel \). Furthermore, the applied \(B_\parallel \) spin-polarizes the \(\nu = 3/2 \) CFs as evinced from the size of the CF Fermi contour.

\(^1\)We acknowledge support through the DOE BES, the Gordon and Betty Moore Foundation, Keck Foundation, NSF, and MRSEC. A portion of this work was performed at the National High Magnetic Field Laboratory.