A comparison of MoSe$_2$ field-effect transistors on SiO$_2$ and parylene-C substrates: possible surface polar phonon effects1 BHIM CHAMLAGAIN, Wayne State University, QING LI, MINGHU PAN, Oak Ridge National Laboratory, TUGENG HONG, HSUEN-JEN CHUANG, MEEGHAGE PERERA, Wayne State University, YONG XU, Wayne State University, DI XAIO, Carnegie Mellon University, NIRMAL GHIMIRE, JIAQIANG YAN, DAVID MANDRUS, University of Tennessee, ZHIXIAN ZHOU, Wayne State University — We report the fabrication and electrical characterization of high quality MoSe$_2$ field-effect transistors fabricated on both SiO$_2$ and parylene-C substrates. Multilayer MoSe$_2$ on parylene-C shows a significantly higher room temperature mobility of 100 cm2V$^{-1}$s$^{-1}$—160 cm2V$^{-1}$s$^{-1}$ than that on SiO$_2$ (\approx50 cm2V$^{-1}$s$^{-1}$). Our variable temperature transport measurements indicate that the mobility of MoSe$_2$ devices on both SiO$_2$ and parylene-C increases to \approx 500 cm2V$^{-1}$s$^{-1}$ as the temperature decreases to below 100 K, with the mobility of MoSe$_2$ on SiO$_2$ increasing more rapidly. We attribute the observed difference in mobility and its temperature dependence between MoSe$_2$ on SiO$_2$ and on parylene-C primarily to the surface polar optical phonon scattering in the SiO$_2$ substrate, which is absent in parylene-C.

1This work was supported by NSF (No. ECCS-1128297).