Abstract Submitted for the MAR14 Meeting of The American Physical Society

Collisions and Reactions of HNO_3 and N_2O_5 with Sea Spray Mimics¹ MICHAEL SHALOSKI, Univ of Wisconsin, Madison, TIMOTHY BERTRAM, Univ of California, San Diego, GILBERT NATHANSON, Univ of Wisconsin, Madison, CENTER FOR AEROSOL IMPACTS ON CLIMATE AND THE ENVIRONMENT (CAICE) TEAM — Heterogeneous reactions occurring at the surface of sea spray aerosol (SSA) droplets can lead to changes in the chemical compositions of the droplet, the denitrification of the atmosphere, and the production of chlorine-containing gases. These processes ultimately influence both ozone and methane concentrations and air quality. We explore these reactions through gasliquid scattering experiments in vacuum using salty and surfactant-coated glycerol (a low vapor pressure liquid) as a proxy for SSA. HNO_3 and N_2O_5 are atmosphericallyrelevant species that can dissociate and react at or near the surface of a protic liquid. In particular, N_2O_5 may react with the solvent to generate HNO₃ and glycerol nitrate and may react with near-interfacial Cl^- to generate $ClNO_2$, Cl_2 , and HONO. Our initial experiments will focus on reactions of DNO₃ to monitor the competition between HCl and HNO₃ formation and desorption.

¹Funded through the NSF Center for Aerosol Impacts on Climate and the Environment (CAICE)

Michael Shaloski Univ of Wisconsin, Madison

Date submitted: 13 Nov 2013

Electronic form version 1.4