Abstract Submitted for the MAR14 Meeting of The American Physical Society

Metal-insulator transitions in GdTiO₃/SrTiO₃ superlattices¹ SE YOUNG PARK, ANDREW MILLIS, Columbia University — The density functional plus U (DFT+U) method is used to obtain electronic structures and metal-insulator phase diagrams of metal-insulator transition of (001) (GdTiO₃)_m/(SrTiO₃)_n superlattices. In metallic phases, the mobile electrons are found in the SrTiO₃ layers, with near-interface electrons occupying xy-derived bands, while away from the interface the majority of electrons reside in xz/yz bands. As the thickness n of the SrTiO₃ layers decreases a metal-insulator transition occurs. Two insulating phases are found. At n = 1 the hybridization of two TiO₂ layers across the SrO layer leads to a dimerized insulating state as previously proposed² with relatively small U_c ~ 2.5 eV. For n > 1 we find that insulating phases occur together with checkerboard charge and orbital ordering and variation of Ti-O bonds at a larger U_c ~ 3.5eV. Inconsistencies with experiment suggest that many-body correlations are important.

¹Supported by DOE ER-046169 and the Kwanjeong educational foundation. ²Ru Chen, SungBin Lee, and Leon Balents, Phys. Rev. B **87**, 161119(R) (2013).

> Se Young Park Columbia University

Date submitted: 13 Nov 2013

Electronic form version 1.4