Chiral orbital angular momentum perspective on surface electronic states of SrTiO$_3$ and KTaO$_3$1 KYEONG TAE KANG, PANJIN KIM, JUNG HOON HAN, SungKyunKwan University, Suwon, South Korea — Tight-binding models suitable for the recently observed surface electronic bands of SrTiO$_3$ and KTaO$_3$ are analyzed with a view to bringing out the relevance of chiral orbital angular momentum (OAM) structure in the t_{2g}-derived bands. With the inversion symmetry breaking at the surface, orbital chiralities of the three bands (neglecting spin splitting) are $m = +1, 0, -1$. Further inclusion of spin-orbit interaction induces linear Rashba splitting on the chiral OAM bands, but not in the non-chiral, $m = 0$ band structure. Our predictions can be easily verified by circular dichroism ARPES experiment.

1This work is supported by the NRF grant (No. 2013R1A2A1A01006430). P. J. K. acknowledges support from the Global Ph. D. Fellowship Program (NRF-2012).