Wave Propagation in Expanding Cell Layers

KAZAGE J CHRISTOPHE UTUJE, Syracuse University, SHILADITYA BANERJEE, University of Chicago, M. CRISTINA MARCHETTI, Syracuse University — The coordinated migration of groups of cells drives important biological processes, such as wound healing and morphogenesis. In this talk we present a minimal continuum model of an expanding cell monolayer coupling elastic deformations to myosin-based activity in the cells. The myosin-driven contractile activity is quantified by the chemical potential difference for the process of ATP hydrolysis by myosin motors. A new ingredient of the model is a feedback of the local strain rate of the monolayer on contractility that naturally yields a mechanism for viscoelasticity of the cellular medium. By combining analytics and numerics we show that this simple model reproduces qualitatively many experimental findings, including the build-up of contractile stresses at the center of the cell monolayer, and the existence of traveling mechanical waves that control spreading dynamics and stress propagation in the cell monolayer.

1KJCU and MCM were supported by the NSF through grants DMR-1004789 and DGE-1068780.
2Physics Department, Syracuse University, Syracuse NY 13244
3James Franck Institute, University of Chicago, Chicago IL 60637
4Physics Department and Syracuse Biomaterials Institute, Syracuse University, Syracuse NY 13244