Abstract Submitted for the MAR14 Meeting of The American Physical Society

Thermodynamic and electronic properties of superconducting state of KM_2 (M = Sn, Pb) with the MgZn₂-type structure SHOTA MIYAZAKI, KENJI KAWASHIMA, DAIKI HYAKUMURA, RYUTARO MAT-SUMURA, Aoyama Gakuin Univ, MASAAKI YOSHIKAWA, IMRA Material Co., LTD, JUN AKIMITSU, Aoyama Gakuin Univ — We discovered new superconductors of KM_2 (M = Sn, Pb) with the MgZn₂-type (C14) structure (Laves phase) using the high pressure / temperature technique. The superconducting transition temperature (T_c) is to be $T_c = 3.2$ K for KSn₂ and $T_c = 3$ K for KPb₂ (These samples include small impurity phase of Sn $(T_c = 3.7 \text{ K})$ and Pb $(T_c = 6.7 \text{ K})$). In order to determine the superconducting parameters, we have performed the magnetic susceptibility measurement. The magnetization versus magnetic field curves of KM₂ at 1.8 K shows a typical type-II superconducting behavior. From the density of state (DOS) calculation using the WIEN2K, the main contribution of DOS near the Fermi level $(E_{\rm F})$ is Sn (Pb) orbitals. In particular, p-orbitals of Sn (Pb) are dominant, indicating that the *p*-orbital of these atoms plays an important role for the superconducting state in KM_2

> Shota Miyazaki Aoyama Gakuin Univ

Date submitted: 14 Nov 2013

Electronic form version 1.4