Substitution effect of Ir oxide with K$_2$NiF$_4$ type structure
SHINGO YASUDA, KENJI KAWASHIMA, Aoyama Gakuin Univ, MASAAKI YOSHIKAWA, IMRA Material Co. Ltd., JUN AKIMITSU, Aoyama Gakuin Univ
— The ground state of Sr$_2$IrO$_4$ with the K$_2$NiF$_4$ –type structure is the Mott insulator generated by the competition between the strong spin-orbit coupling (SOC, \sim0.5eV) and weak Coulomb interaction (U, \sim0.5eV). The crystal structure of Sr$_2$IrO$_4$ consists of stacked two dimensional (2D) IrO$_2$ layers with canted antiferromagnetic order ($T_N = 250$K) and SrO layer, similar to the high-T_c cuprate La$_2$CuO$_4$. We have investigated the substitution effect for Sr$_2$IrO$_4$ to confirm the influence of band filling control of Mott insulating state. We synthesized the hole doping sample of Sr$_{2-x}$K$_x$IrO$_4$ and electron doping sample of Sr$_{2-x}$La$_x$IrO$_4$. From the magnetic susceptibility data, the absolute magnetic moment of Sr$_{2-x}$La$_x$IrO$_4$ decreases with increasing La concentration x (However, T_N value is almost constant, being independent of x). The electrical resistivity data of Sr$_{2-x}$M$_x$IrO$_4$ ($M = K, La$) systematically decreases with increasing x. These facts indicate that we succeeded in effective carrier doping to IrO$_2$ layer and suggest that the ground state is gradually changed toward to metallic state.