Abstract Submitted for the MAR14 Meeting of The American Physical Society

Substitution effect of Ir oxide with K₂NiF₄ type structure SHINGO YASUDA, KENJI KAWASHIMA, Aoyama Gakuin Univ, MASAAKI YOSHIKAWA, IMRA Material Co. Ltd., JUN AKIMITSU, Aoyama Gakuin Univ — The ground state of Sr_2IrO_4 with the K_2NiF_4 –type structure is the Mott insulator generated by the competition between the strong spin-orbit coupling (SOC, $\sim 0.5 \text{eV}$) and weak Coulomb interaction $(U, \sim 0.5 \text{eV})$. The crystal structure of Sr₂IrO₄ consists of stacked two dimensional (2D) IrO₂ layers with canted antiferromagnetic order $(T_{\rm N} = 250 {\rm K})$ and SrO layer, similar to the high- $T_{\rm c}$ cuprate La₂CuO₄. We have investigated the substitution effect for Sr_2IrO_4 to confirm the influence of band filling control of Mott insulating state. We synthesized the hole doping sample of $Sr_{2-x}K_xIrO_4$ and electron doping sample of $Sr_{2-x}La_xIrO_4$. From the magnetic susceptibility data, the absolute magnetic moment of $Sr_{2-x}La_xIrO_4$ decreases with increasing La concentration x (However, $T_{\rm N}$ value is almost constant, being independent of x). The electrical resistivity data of $Sr_{2-x}M_xIrO_4$ (M = K, La) systematically decreases with increasing x. These facts indicate that we succeeded in effective carrier doping to IrO_2 layer and suggest that the ground state is gradually changed toward to metallic state.

> Shingo Yasuda Aoyama Gakuin Univ

Date submitted: 14 Nov 2013

Electronic form version 1.4