High-pressure Phase Ge nanoparticles and Si-ZnS nanocomposites: New Paradigms to Improve the Efficiency of MEG Solar Cells

STE-
FAN WIPPERMANN, Max-Planck-Institute for Iron Research, Duesseldorf, MAR-
TON VOROS, University of California, Davis, BALINT SOMOGYI, ADAM GALI,
Budapest University of Technology and Economics, DARIO ROCCA, Universite de
Lorraine, FRANCOIS GYGI, GERGELY ZIMANYI, GIULIA GALLI, University of
California, Davis — The efficiency of nanoparticle (NP) solar cells may substantially
exceed the Shockley-Queisser limit by exploiting multi-exciton generation. However, (i) quantum confinement tends to increase the electronic gap and thus the
MEG threshold beyond the solar spectrum and (ii) charge extraction through NP
networks may be hindered by facile recombination. Using \textit{ab initio} calculations we
found that (i) Ge NPs with exotic core structures such as BC8 exhibit significantly
lower gaps and MEG thresholds than particles with diamond cores, and an order
of magnitude higher MEG rates. (ii) We also investigated Si NPs embedded in
a ZnS host matrix and observed complementary charge transport networks, where
electron transport occurs by hopping between NPs and hole transport through the
ZnS-matrix. Such complementary pathways may substantially reduce recombina-
tion, as was indeed observed in recent experiments. We employed several levels of
theory, including DFT with hybrid functionals and GW calculations.