Abstract Submitted for the MAR14 Meeting of The American Physical Society

anisotropy in the electromagnetic properties Strong of $Na_2Ti_2X_2O$ (X = As, Sb) crystals YOUGUO SHI, NANLIN WANG, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, EX1 OF INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES TEAM — $Na_2Ti_2X_2O$ (X = As, Sb) crystals have been grown from the flux method. X-ray diffraction characterization revealed an anti-K₂NiF₄-type layered structure (tetragonal, space group I4/mmm) for both compounds. Magnetic susceptibility $(\chi(T))$ and electrical resistivity $(\rho(T))$ measurements revealed major kinks at 115 K (T_{s1}) and 320 K (T_{s2}) for Na₂Ti₂Sb₂O and Na₂Ti₂As₂O, respectively, signifying possibly the opening of density wave gaps. Both Na₂Ti₂Sb₂O and Na₂Ti₂As₂O showed remarkably strong anisotropy in their electromagnetic transport properties, and values of $\gamma_{\rho}(\rho_c/\rho_{ab})$ even reached 140 and 430, respectively, being much larger than that of iron pnictide $BaFe_2As_2(\gamma_{\rho} = 2-5)$. The $\gamma\rho$ of $Na_2Ti_2Sb_2O$ changed slightly with cooling, though a small drop at T_{s1} occurred. In contrast, the γ_{ρ} of Na₂Ti₂As₂O changed strikingly by exhibiting not only a small change at T_{s2} but also a sudden decrease of 50 K, reduced nearly 1/3. Specific heat measurement indicated that $Na_2Ti_2Sb_2O$ was only partially gapped with $\gamma_1 = 4.1 \text{ mJ}$ $\mathrm{mol}^{-1} \mathrm{K}^{-2}$, though a long-range order was established at T_{s1} , while Na₂Ti₂As₂O was fully gapped. The remarkably strong electromagnetic anisotropy revealed in $Na_2Ti_2X_2O$ suggests the crucial role of the TiO_2X_4 layer for the transport properties of layered titanium oxypnictides.

> Youguo Shi Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences

Date submitted: 14 Nov 2013

Electronic form version 1.4