Strong anisotropy in the electromagnetic properties of \(\text{Na}_2\text{Ti}_2\text{X}_2\text{O} \) \((X = \text{As, Sb})\) crystals

YOUGUO SHI, NANLIN WANG, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, EX1 OF INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES TEAM

— \(\text{Na}_2\text{Ti}_2\text{X}_2\text{O} \) \((X = \text{As, Sb})\) crystals have been grown from the flux method. X-ray diffraction characterization revealed an anti-\(\text{K}_2\text{NiF}_4 \)-type layered structure (tetragonal, space group \(I4/mmm \)) for both compounds. Magnetic susceptibility \((\chi(T))\) and electrical resistivity \((\rho(T))\) measurements revealed major kinks at 115 K \((T_{s1})\) and 320 K \((T_{s2})\) for \(\text{Na}_2\text{Ti}_2\text{Sb}_2\text{O} \) and \(\text{Na}_2\text{Ti}_2\text{As}_2\text{O} \), respectively, signifying possibly the opening of density wave gaps. Both \(\text{Na}_2\text{Ti}_2\text{Sb}_2\text{O} \) and \(\text{Na}_2\text{Ti}_2\text{As}_2\text{O} \) showed remarkably strong anisotropy in their electromagnetic transport properties, and values of \(\gamma_{\rho}(\rho/c/\rho_{ab}) \) even reached 140 and 430, respectively, being much larger than that of iron pnictide \(\text{BaFe}_2\text{As}_2 \) \((\gamma_{\rho} = 2–5)\). The \(\gamma_{\rho} \) of \(\text{Na}_2\text{Ti}_2\text{Sb}_2\text{O} \) changed slightly with cooling, though a small drop at \(T_{s1} \) occurred. In contrast, the \(\gamma_{\rho} \) of \(\text{Na}_2\text{Ti}_2\text{As}_2\text{O} \) changed strikingly by exhibiting not only a small change at \(T_{s2} \) but also a sudden decrease of 50 K, reduced nearly 1/3. Specific heat measurement indicated that \(\text{Na}_2\text{Ti}_2\text{Sb}_2\text{O} \) was only partially gapped with \(\gamma_1 = 4.1 \text{mJ mol}^{-1} \text{K}^{-2} \), though a long-range order was established at \(T_{s1} \), while \(\text{Na}_2\text{Ti}_2\text{As}_2\text{O} \) was fully gapped. The remarkably strong electromagnetic anisotropy revealed in \(\text{Na}_2\text{Ti}_2\text{X}_2\text{O} \) suggests the crucial role of the \(\text{TiO}_2\text{X}_4 \) layer for the transport properties of layered titanium oxypnictides.

Youguo Shi
Beijing National Laboratory for Condensed Matter Physics,
Institute of Physics, Chinese Academy of Sciences