Abstract Submitted for the MAR14 Meeting of The American Physical Society

Strong Coupling S-wave Superconductivity in $Bi_4O_4S_3$ - SHRUTI, PANKAJ SRIVASTAVA, SATYABRATA PATNAIK, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India — We investigate the superconducting properties and pairing symmetry in recently discovered Bi₄O₄S₃ superconductor. A series of $Bi_6O_4S_4(SO_4)_{1-x}$ samples were synthesized by solid-state reaction. The optimally doped sample $Bi_4O_4S_3$ which is 50% SO_4 deficient shows maximum T_c of 5.3K as confirmed by resistivity and magnetization measurement. The upper critical field at zero temperature is found to be $\sim 2.75~\mathrm{T}$ and Ginzburg Landau coherence length is estimated to be ~ 110 Å. Hall measurement confirmed the dominant role played by the electrons with charge carrier density of 4.405×10^{19} cm⁻³ at 10 K. The Sommerfeld constant γ is calculated to be 1.113 mJ/K²mol. Superconducting pairing symmetry and superconducting gap was studied from penetration depth measurement using tunnel diode oscillator technique. It is shown that Bi₄O₄S₃ is a strong coupling s-wave type superconductor with fully developed gap. Below T_c , superfluid density is best fitted with single gap s wave model with zero-temperature value of the superconducting energy gap $\Delta_0 = 1.54$ meV, corresponding to the ratio $2\Delta_0/k_BT_c=7.2$ which is much higher than the BCS value of 3.53.

> - Shruti School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India

Date submitted: 14 Nov 2013 Electronic form version 1.4