Strong Coupling S-wave Superconductivity in Bi$_4$O$_4$S$_3$ - SHRUTI, PANKAJ SRIVASTAVA, SATYABRATA PATNAIK, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India — We investigate the superconducting properties and pairing symmetry in recently discovered Bi$_4$O$_4$S$_3$ superconductor. A series of Bi$_6$O$_4$S$_4$(SO$_4$)$_{1-x}$ samples were synthesized by solid-state reaction. The optimally doped sample Bi$_4$O$_4$S$_3$ which is 50% SO$_4$ deficient shows maximum T_c of 5.3K as confirmed by resistivity and magnetization measurement. The upper critical field at zero temperature is found to be ~ 2.75 T and Ginzburg Landau coherence length is estimated to be $\sim 110\text{Å}$. Hall measurement confirmed the dominant role played by the electrons with charge carrier density of 4.405×10^{19} cm$^{-3}$ at 10 K. The Sommerfeld constant γ is calculated to be 1.113 mJ/K2mol. Supercconducting pairing symmetry and superconducting gap was studied from penetration depth measurement using tunnel diode oscillator technique. It is shown that Bi$_4$O$_4$S$_3$ is a strong coupling s-wave type superconductor with fully developed gap. Below T_c, superfluid density is best fitted with single gap s wave model with zero-temperature value of the superconducting energy gap $\Delta_0=1.54$ meV, corresponding to the ratio $2\Delta_0/k_BT_c=7.2$ which is much higher than the BCS value of 3.53.

- Shruti
School of Physical Sciences, Jawaharlal Nehru University,
New Delhi, India

Date submitted: 14 Nov 2013
Electronic form version 1.4