Abstract Submitted for the MAR14 Meeting of The American Physical Society

Ferromagnetism on graphene multilayers by hydrogen adsorption JUAN J. PALACIOS, MOHAMMED MOAIED, JOSE V. ALVAREZ, Universidad Autónoma de Madrid, MARIA J. CATURLA, Universidad de Alicante — A remarkable theoretical prediction for graphene is that, in theory, it can be permanently magnetized by the adsorption of H atoms. Unfortunately, this will only be possible if the adsorption is selectively realized in such a way that all H atoms occupy the same sublattice so that the contributions of the H-induced local magnetic moments add up due to the expected ferromagnetic coupling in this situation. Inspired by recent experiments, I will show that such selectivity can be naturally achieved on the graphite surface. Due to the sublattice broken symmetry on the surface, a spontaneous arrangement of the hydrogen atoms where all end up adsorbed on the same sublattice takes place at room temperature in a reasonable time scale. First-principles calculations combined with kinetic Monte Carlo simulations and model Heisenberg-like Hamiltonians derived from them give a complete account of the emergence of this novel ferromagnetism.

Juan Palacios Universidad Autónoma de Madrid

Date submitted: 14 Nov 2013

Electronic form version 1.4