Evolution of Topological Surface States in Tunable Topological Insulators

GUANGGENG YAO, ZIYU LUO, WENTAO XU, YUANPING FENG, XUE-SEN WANG, National Univ of Singapore — Bi$_{1-x}$Sb$_x$ (0.07 < x < 0.22) is the first generation of 3D topological insulators (TIs), possessing a bandgap and topological surface states (SSs) generated by spin-orbit coupling In fact, within the whole range of 0 < x < 1 (i.e. from pure Bi to pure Sb), a topological phase transition has to occur as the system is twisted from topologically trivial to nontrivial phases, even though it becomes a semimetal hosting a negative indirect gap Therefore, taking advantage of Fourier-transform scanning tunneling spectroscopy (FT-STS) and \textit{ab initio} calculations, we investigate the progressive evolution of topological SSs in the tunable Bi$_{1-x}$Sb$_x$ (0 < x < 1) materials grown by means of molecular beam epitaxy In alloys with several representative compositions, quasiparticle interference (QPI) patterns of SSs exhibit dramatic dependence on x values, indicating that intra-surface scatterings are ultimately determined by band structures and the associated spin textures. Additionally, the corresponding simulated QPI patterns are also revealed based on \textit{ab initio} calculations. Such systematic studies of the Bi$_{1-x}$Sb$_x$ alloy family can be further explored to tailor surface energetic and transport properties for potential applications in quantum information, spintronics and many other topological quantum phenomena.

Ziyu Luo
National Univ of Singapore

Date submitted: 14 Nov 2013

Electronic form version 1.4