Abstract Submitted for the MAR14 Meeting of The American Physical Society

Effective Properties of Graphene with Large Periodic Anti-dots¹ BING ZHANG, PING SHENG, physics department of Hong Kong University of Science and Technology — Antidot graphene is an interesting material system which can exhibit a bandgap. In this work we present the effective properties of graphene with large periodic anti-dots, obtained by solving the Weyl equation numerically, as well as through the k dot p theory calculation. We find the dispersion relation to be hyperbolic in character, leading to an effective mass m^{*} with an altered Fermi velocity v_{eff} as compared to the pristine case. The gap is exactly given by $2m^*c^2$, where c is the speed of light. The dependence of m^{*} and v_{eff} on geometric parameters is investigated. A remarkable enhancement of the Coulomb interaction parameter is seen in the antidot graphene, in the region close to the bottom of the band. This can explain the appearance of a Coulomb quasi-gap discovered recently in this material system.

¹SRFI11/SC02 and the Research Grants Council of Hong Kong Grant HKUST9/CRF/08.

Bing Zhang physics department of Hong Kong University of Science and Technology

Date submitted: 14 Nov 2013

Electronic form version 1.4