Large dynamical magnetic charges driven by exchange striction
MENG YE, DAVID VANDERBILT, Rutgers University - New Brunswick — Magnetoelastic (ME) materials are of fundamental interest and are investigated for their broad potential applications. First-principles methods have only recently been developed to calculate the full ME response tensor α including both electronic and ionic contributions.\(^1\) In several materials, the dominant contribution to the ME response has been shown to be the ionic term α_{ion}, which is proportional to both the Born charge Z^e and its analogue, the dynamical magnetic charge Z^m.\(^2\) Here we present a theoretical study of mechanisms that could enhance the magnetic charge Z^m. The KITPite structure is reported with large ME response arising from exchange striction and spin frustration.\(^3\) Using first-principles density-functional methods, we calculate the atomic Z^m tensors in KITPite and conclude that even when SOC is completely absent, the exchange striction acting on the non-collinear spin structure induces much larger magnetic charges than in the case when Z^m is driven by SOC as in Cr_2O_3.

Meng Ye
Rutgers University - New Brunswick

Date submitted: 14 Nov 2013

Electronic form version 1.4