Adsorption characteristics of Thiophene on Cu and Ni(100): role of van der Waals

TOMAS ROJAS, JERONIMO MATOS, ABDELKADER KARA, Department of Physics, University of Central Florida — We apply density functional theory, with and without the inclusion of self-consistent van der Waals (vdWs) interactions (optB86, optB88, optPBE, revPBE, rPW86), to study the adsorption of thiophene (C_4H_4S) on Cu(100) and Ni(100). Our calculations reveal that the C_4H_4S molecule adsorbs, on either substrate, with its molecular plane parallel to the surface with the sulfur close to the bridge site. The inclusion of vdWs interactions results in a significant increase in the binding energy of thiophene on Cu(100) (from 0.12 eV to up to 0.77 eV), while the adsorption height is also modified from 3.2 Å down to, at most, 2.38 Å, depending on the functional used. The Ni(100) case presents a similar behavior for the binding energy (enhancement from 1.56 eV to up to 2.34 eV), but the adsorption heights increase from 2.12 Å up to 2.32 Å. In addition to adsorption geometry and energetics, we present the results and analysis of the electronic properties (charge transfer, changes in the d-band of the substrate, and change in the work function) of these two systems to complement our understanding of the molecule-substrate bonding. Our results suggest that the adsorption characteristics are dependent on the type of functional used; opt-type functionals (optB86, optB88, optPBE) are found to produce stronger bonding as compared to PBE, revPBE and rPW86.

1This work is funded by the U.S. Department of Energy Basic Energy Science under Contract No DE-FG02-11ER16243