Adsorption, desorption, and diffusion of atomic hydrogen on graphene

MAJID KARIMI1, JUSTIN PETUCCI2, CARL LEBLOND3, GIAN-FRANCO VIDALI4, None — Using a modified AIREBO bond-order potential for hydrocarbons, adsorption potential, desorption potential, and diffusion barriers of atomic hydrogen on graphene are obtained and compared with the corresponding results from the first-principles. The formation of molecular hydrogen through Eley-Rideal and Hot-Atom mechanisms is investigated. The massively parallel molecular dynamics code lammps and nudged elastic band NEB method are employed to do these calculations.

1Physics Department, Indiana University of PA
2Physics Department, Denver University
3Chemistry Department, Indiana University of PA
4Physics Department, Syracuse University