Abstract Submitted for the MAR14 Meeting of The American Physical Society

The decoherence of exchange-only qubits in triple quantum $dots^1$ JO-TZU HUNG, State Univ of NY - Buffalo, JIANJIA FEI, MARK FRIESEN, University of Wisconsin - Madison, XUEDONG HU, State Univ of NY - Buffalo -We study decoherence of a three-electron-spin qubit in a linear triple quantum dot (TQD) by hyperfine interaction. The qubit is encoded in the $(S = 1/2, S_z = 1/2)$ subspace, and can be fully controlled electrically via exchange interactions J_{12} and J_{23} between the electron spins. We clarify how hyperfine interaction dephases the qubit by constructing effective Hamiltonians and presenting estimates of free evolution and Hahn echo decay for such qubit in a GaAs TQD. When the three electron spins are uniformly coupled, i.e., $J_{12} = J_{23}$, the two states of our qubit are the eigenstates. We find that the qubit decoherence is of order of single-spin decoherence $(T_2^* \sim 10 \text{ ns}, T_2 \text{ on the scale of } \mu \text{s})$. On the other hand, a difference between J_{12} and J_{23} requires one to diagonalize the qubit space to obtain an appropriate eigenbasis. Alternatively, the qubit can be viewed as undergoing a rotation. We find that the decoherence rates in the new basis are not significantly modified when comparing them with those in the $J_{12} = J_{23}$ case.

¹This work is supported by the US ARO and NSF.

Jo-Tzu Hung State Univ of NY - Buffalo

Date submitted: 14 Nov 2013

Electronic form version 1.4