Abstract Submitted for the MAR14 Meeting of The American Physical Society

The Hidden Order Gap and In-Gap Excitation Mode in URu₂Si₂ **Revealed by Electronic Raman Scattering¹** HSIANG-HSI KUNG, Rutgers University, RYAN BAUMBACH, ERIC BAUER, Los Alamos National Laboratory, JOHN A. MYDOSH, Kamerlingh Onnes Laboratory, WEILU ZHANG, VERNER K. THORSMØLLE, KRISTJAN HAULE, GIRSH BLUMBERG, Rutgers University — The heavy fermion compound URu_2Si_2 displays a phase transition into the so called "hidden order" state at $T_{HO} = 17.5 \,\mathrm{K}$. Using polarized electronic Raman scattering, we show that the Raman response in the A_{2g} symmetry channel (D_{4h}) : (1) at high temperatures can be described by a Drude-like continuum with the scattering rate decreasing from $46 \,\mathrm{cm}^{-1}$ at 300 K to $16 \,\mathrm{cm}^{-1}$ at 70 K; (2) develops a low energy peak due to spectral weight transfer through Fano interference in the temperature range of 70-20 K; (3) below T_{HO} develops a gap of about 55 cm⁻¹ in the continuum, and a sharp in-gap mode centered at $14 \,\mathrm{cm}^{-1}$. In addition, we show that the real part of the static Raman susceptibility in the A_{2q} symmetry is proportional to the c-axis static magnetic susceptibility above T_{HO} . The implication of these observations will be discussed in the talk.

¹GB, HHK and VKT acknowledge support from DOE BES Award DE-SC0005463 and NSF award DMR-1104884. KH acknowledge support from NSF Career DMR-0746395. WZ acknowledge ICAM support (NSF-IMI grant DMR-0844115).

> Hsiang-Hsi Kung Rutgers University

Date submitted: 14 Nov 2013

Electronic form version 1.4