Weak Topological Insulators in PbTe/SnTe superlattice1 GANG YANG, The Penn State University, JUNWEI LIU, Tsinghua University, LIANG FU, MIT, WENHUI DUAN, Tsinghua University, CHAOXING LIU, The Penn State University — It is desirable to realize topological phases in artificial structures by engineering electronic band structures. In this paper, we investigate (PbTe)\textsubscript{m}(SnTe)\textsubscript{2n−m} superlattices along the [001] direction and find a robust weak topological insulator phase for a large variety of layer numbers \(m\) and \(2n − m\). We confirm this topologically non-trivial phase by calculating \(Z_2\) topological invariants and topological surface states based on the first-principles calculations. We show that the folding of Brillouin zone due to the superlattice structure plays an essential role in inducing topologically non-trivial phases in this system. This mechanism can be generalized to other systems in which band inversion occurs at multiple momenta, and gives us a brand-new way to engineer topological materials in artificial structures.

1We acknowledge support from the Ministry of Science and Technology of China and the National Natural Science Foundation of China. LF is supported by the DOE Office of Basic Energy Sciences.

Gang Yang
The Penn State University

Date submitted: 14 Nov 2013
Electronic form version 1.4