The evolution of microwave conductivity in YBa$_2$Cu$_3$O$_{6+x}$ across the superconducting dome JORDAN BAGLO, JAMES DAY, PINDER DOSANJH, RUIXING LIANG, WALTER HARDY, DOUG BONN, University of British Columbia — The rich phenomenology displayed in the phase diagram of the high-T_c cuprates continues to be an active arena of investigation. Recent experimental and theoretical work appears to be converging on a picture of separate spin and charge order phase transitions – well-below and near optimal doping, respectively – along with associated Fermi surface reconstruction. As sensitive probes of the low-energy electrodynamics, microwave spectroscopy techniques are well-suited for characterizing the effects of such changes in electronic structure deep within the superconducting state. I will present the results of our survey of the complex microwave conductivity of YBa$_2$Cu$_3$O$_{6+x}$ over a wide range of oxygen contents, from 6.49 to 6.998, and discuss their implications for the evolution of electronic structure with doping. I will also discuss the surprising relationship we observed between quasiparticle scattering lifetimes and oxygen ordering, which carries important implications for quantum oscillation measurements.

Jordan Baglo
Department of Physics and Astronomy, University of British Columbia

Date submitted: 14 Nov 2013
Electronic form version 1.4