Abstract Submitted for the MAR14 Meeting of The American Physical Society

Wiedemann-Franz law and non-vanishing temperature scale across the field-tuned quantum critical point of $\mathbf{YbRh}_{2}\mathbf{Si}_{2}$ J.-PH REID, M. TANATAR, R. DAOU, Sherbrooke University, RONGWEI HU, C. PETRO-VIC, Brookhaven National Laboratory, LOUIS TAILLEFER, Sherbrooke University, BROOKHAVEN NATIONAL LABORATORY COLLABORATION — The inplane thermal conductivity κ and electrical resistivity ρ of the heavy-fermion metal $YbRh_2Si_2$ were measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through the field-tuned quantum critical point, H_c , at which antiferromagnetic order ends. The thermal and electrical resistivities, $w \equiv L_0 T/\kappa$ and ρ , show a linear temperature dependence below 1 K, typical of the non-Fermi liquid behaviour found near antiferromagnetic quantum critical points, but this dependence does not persist down to T = 0. Below a characteristic temperature $T^{\star} \simeq 0.35$ K, which depends weakly on H, w(T) and $\rho(T)$ both deviate downward and converge as $T \to 0$. We propose that T^* marks the onset of short-range magnetic correlations, persisting beyond H_c . By comparing samples of different purity, we conclude that the Wiedemann-Franz law holds in YbRh₂Si₂, even at H_c , implying that no fundamental breakdown of quasiparticle behaviour occurs in this material. The overall phenomenology of heat and charge transport in $YbRh_2Si_2$ is similar to that observed in the heavy-fermion metal CeCoIn₅, near its own field-tuned quantum critical point.

> Jean Philippe Reid Univ of St Andrews

Date submitted: 14 Nov 2013

Electronic form version 1.4