Persistent Optically Induced Magnetism in Oxygen-Deficient Strontium Titanate

W.D. RICE, J.D. THOMPSON, S.A. CROOKER, Los Alamos National Laboratory, M. BOMBECK, TU Dortmund, P. AMBWANI, C. LEIGHTON, Dept. of Chem. Engineering and Materials Science, Univ. of Minnesota — Strontium titanate (SrTiO$_3$) is a foundational material in the emerging field of complex oxide electronics. While its electronic, optical, and lattice properties have been studied for decades, SrTiO$_3$ has recently become a renewed focus of materials research owing to the discovery of magnetism and superconductivity at interfaces between SrTiO$_3$ and other oxides. The formation and distribution of oxygen vacancies may play an essential but as-yet-incompletely understood role. Here we observe an optically induced and persistent magnetization in slightly oxygen-deficient bulk SrTiO$_{3-\delta}$ crystals using magnetic circular dichroism spectroscopy and SQUID magnetometry. The optically induced magnetization appears below \sim18 K, persists for hours below 10 K, and is tunable via the polarization and wavelength of sub-bandgap (400-500 nm) light. These effects, which only occur in oxygen-deficient samples, reveal a detailed interplay between defects, magnetism, and light in oxide materials.

1W. D. Rice et al. submitted. See article on arXiv.